Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation.

نویسندگان

  • Chao-You Pang
  • Hui Wang
  • Yu Pang
  • Chao Xu
  • Yue Jiao
  • Yong-Mei Qin
  • Tamara L Western
  • Shu-Xun Yu
  • Yu-Xian Zhu
چکیده

The quality of cotton fiber is determined by its final length and strength, which is a function of primary and secondary cell wall deposition. Using a comparative proteomics approach, we identified 104 proteins from cotton ovules 10 days postanthesis with 93 preferentially accumulated in the wild type and 11 accumulated in the fuzzless-lintless mutant. Bioinformatics analysis indicated that nucleotide sugar metabolism was the most significantly up-regulated biochemical process during fiber elongation. Seven protein spots potentially involved in pectic cell wall polysaccharide biosynthesis were specifically accumulated in wild-type samples at both the protein and transcript levels. Protein and mRNA expression of these genes increased when either ethylene or lignoceric acid (C24:0) was added to the culture medium, suggesting that these compounds may promote fiber elongation by modulating the production of cell wall polymers. Quantitative analysis revealed that fiber primary cell walls contained significantly higher amounts of pectin, whereas more hemicellulose was found in ovule samples. Significant fiber growth was observed when UDP-L-rhamnose, UDP-D-galacturonic acid, or UDP-D-glucuronic acid, all of which were readily incorporated into the pectin fraction of cell wall preparations, was added to the ovule culture medium. The short root hairs of Arabidopsis uer1-1 and gae6-1 mutants were complemented either by genetic transformation of the respective cotton cDNA or by adding a specific pectin precursor to the growth medium. When two pectin precursors, produced by either UDP-4-keto-6-deoxy-D-glucose 3,5-epimerase 4-reductase or by UDP-D-glucose dehydrogenase and UDP-D-glucuronic acid 4-epimerase successively, were used in the chemical complementation assay, wild-type root hair lengths were observed in both cut1 and ein2-5 Arabidopsis seedlings, which showed defects in C24:0 biosynthesis or ethylene signaling, respectively. Our results suggest that ethylene and C24:0 may promote cotton fiber and Arabidopsis root hair growth by activating the pectin biosynthesis network, especially UDP-L-rhamnose and UDP-D-galacturonic acid synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system

As the most important natural raw material for textile industry, cotton fibres are an excellent model for studying single-cell development. Although expression profiling and functional genomics have provided some data, the mechanism of fibre development is still not well known. A class I TCP transcription factor (designated GbTCP), encoding 344 amino acids, was isolated from the normalized cDNA...

متن کامل

Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis.

Fatty acids are essential for membrane biosynthesis in all organisms and serve as signaling molecules in many animals. Here, we found that saturated very-long-chain fatty acids (VLCFAs; C20:0 to C30:0) exogenously applied in ovule culture medium significantly promoted cotton (Gossypium hirsutum) fiber cell elongation, whereas acetochlor (2-chloro-N-[ethoxymethyl]-N-[2-ethyl-6-methyl-phenyl]-ace...

متن کامل

A Cotton Annexin Protein AnxGb6 Regulates Fiber Elongation through Its Interaction with Actin 1

Annexins are assumed to be involved in regulating cotton fiber elongation, but direct evidence remains to be presented. Here we cloned six Annexin genes (AnxGb) abundantly expressed in fiber from sea-island cotton (G. barbadense). qRT-PCR results indicated that all six G. barbadense annexin genes were expressed in elongating cotton fibers, while only the expression of AnxGb6 was cotton fiber-sp...

متن کامل

Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively.

Vacuolar invertase (VIN) has long been considered as a major player in cell expansion. However, direct evidence for this view is lacking due, in part, to the complexity of multicellular plant tissues. Here, we used cotton (Gossypium spp.) fibers, fast-growing single-celled seed trichomes, to address this issue. VIN activity in elongating fibers was approximately 4-6-fold higher than that in lea...

متن کامل

Primary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis

There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular & cellular proteomics : MCP

دوره 9 9  شماره 

صفحات  -

تاریخ انتشار 2010